Closing Tuesday: 6.3, 6.4
Closing Thursday: 6.5
Final exam is Saturday, December 10 5:00pm to 7:50pm in Kane Hall 130. You have an assigned seat, see the first entry at the top of your grade report for your assigned seat.
$R=$ amount of each regular payment
$r=$ decimal interest rate
$m=$ num. of compoundings in a year
Compute:
$i=\frac{r}{m}=$ rate at each compounding
$n=m t=$ total payments

	Ordinary (Payments at END of each period)	Due (Payments at BEGINNING of each period)
FV (Balance Growing)	$F=R \frac{(1+i)^{n}-1}{i}$	$F=R \frac{(1+i)^{n}-1}{i}(1+i)$
PV (Balance Shrinking)	$P=R \frac{1-(1+i)^{-n}}{i}$	$P=R \frac{1-(1+i)^{-n}}{i}(1+i)$

2.A company establishes a sinking fund to pay a debt of $\$ 100,000$ due in 4 years. At the beginning of each six-month period, they deposit \$R in an account paying 9%, compounded semi-annually. How big must the payments be to pay the debt on time?

Ordinary or Due?, FV or PV?
$r=, m=, t=$
$i=$
$\mathrm{R}=\quad, \mathrm{FV} / \mathrm{PV}=$
3.Your retirement account earns 7\%, compounded quarterly. How much must the account contain when you retire if you want to withdraw $\$ 6000$ at the end of each quarter for 30 years?

Ordinary or Due? , FV or PV?
$r=\quad, m=, t=$
$\mathrm{i}=\quad, \mathrm{n}=$
$R=$
, FV/PV =
4. You inherit $\$ 200,000$ and invest it at 3%, compounded monthly. If you withdraw $\$ 1000$ at the beginning of every month, how long will the money last?

Ordinary or Due?, FV or PV?
$r=, m=, t=$
$i=$
, $\mathrm{n}=$
$R=\quad, F V / P V=$

Chapter 6 Summary

1. Are there regular payments?
(a) NO: it's a LUMP SUM problem.
(b) YES: it's an ANNUITY problem.

2(a) For LUMP SUM, does it say:
(i) "simple interest"?
(ii) "compound continuously"?
(iii) "compounded m times a year"

2(b) For ANNUITIES,
(i) payments at BEGINNING or END?
(ii) balance GROWING or SHRINKING?

Special notes on Annuities:

1. Always first compute
$i=r / m=$ rate used at each period.
$n=m t=$ total number of payments
2. Since
$R=$ payment amount, and
$n=$ total number of payments
we have
$R \cdot n=$ total amount paid.

Thus, for FV questions
Total interest earned $=F-R \cdot n$
and for PV questions
Total interest paid $=R \cdot n-P$
3. Loans are present value, ordinary annuities. If there is a down payment on a loan, then
$P=$ original value - down payment

Homework Question 6.3 Problem 7(a)(b):

A small business owner contributes
$\$ 2000$ at the end of each quarter to a retirement account that earns 10% compounded quarterly.
(a) How long will it be until the account is worth $\$ 150,000$?
(Round your answer to the nearest quarter.)
(b) Suppose when the account reaches $\$ 150,000$, the business owner increases the contributions to $\$ 4000$ at the end of each quarter. What will the total value of the account be after 15 more years?

(Old Final Question)

Immediately after graduating from college, Julian started a savings plan, depositing $\$ 200$ at the end of each month in an account paying 3% interest, compounded monthly. After 6 years, Julian stopped making payments but left the money in the account, gaining interest at the same rate, for an additional 4 years.
(a) How much money is in the account in 6 years?
(b) How much money is in the account in 10 years?

